If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x-20=0
a = 3; b = -19; c = -20;
Δ = b2-4ac
Δ = -192-4·3·(-20)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{601}}{2*3}=\frac{19-\sqrt{601}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{601}}{2*3}=\frac{19+\sqrt{601}}{6} $
| 10v=11v-5 | | 1)x-0.5=1.25 | | 17a+7=15a+9 | | 2w=41 | | 75=r-1.4 | | -3(2x+7)=-6x+7 | | 12s-10=6s+20 | | 96q+100*(1-q)=100q+90*(1-q) | | 7(7+4x0=133 | | 7v-(-12)=-19 | | 0.5x+6=2x | | 32=5w-12 | | 6y+12=5y-11 | | 2x+1-7x=-2 | | 2/3x+1=21 | | 11t-(-5t)-(-6t)-19t=18 | | 7-3x=14-4x | | 5(-2x+5)=-85 | | -9x-3=-12 | | 126+2b=5b+114 | | .5x+35=75 | | 2=(d+9) | | 20/x=0,7/1,2 | | 4x+32=9x-6 | | y/7=11.12 | | 6x+5=7x+47 | | 6x=42* | | 3(2x-9)=0 | | 20/x=1.2/0,7 | | m4=16. | | 2x−4=5x+17 | | x/5-10=45 |